首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14778篇
  免费   719篇
  国内免费   148篇
化学   9472篇
晶体学   47篇
力学   327篇
综合类   1篇
数学   2930篇
物理学   2868篇
  2023年   135篇
  2022年   113篇
  2021年   307篇
  2020年   420篇
  2019年   496篇
  2018年   379篇
  2017年   291篇
  2016年   597篇
  2015年   564篇
  2014年   549篇
  2013年   914篇
  2012年   1078篇
  2011年   1276篇
  2010年   679篇
  2009年   564篇
  2008年   910篇
  2007年   830篇
  2006年   838篇
  2005年   772篇
  2004年   605篇
  2003年   446篇
  2002年   365篇
  2001年   180篇
  2000年   125篇
  1999年   130篇
  1998年   114篇
  1997年   146篇
  1996年   149篇
  1995年   133篇
  1994年   103篇
  1993年   94篇
  1992年   79篇
  1991年   71篇
  1990年   62篇
  1989年   37篇
  1988年   44篇
  1987年   47篇
  1986年   44篇
  1985年   66篇
  1984年   57篇
  1983年   36篇
  1982年   59篇
  1981年   47篇
  1980年   43篇
  1979年   40篇
  1978年   45篇
  1977年   43篇
  1976年   47篇
  1975年   30篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
101.
Semiconductor nanocrystals consisting of a quantum dot (QD) core and a quantum well (QW) shell, where the QD and QW are separated by a tunneling barrier, offer a unique opportunity to engineer the photophysical properties of individual nanostructures. Using the thicknesses of the corresponding layers, the excitons of the first and second excited states can be separated spatially, localizing one state to the QD and the other to the QW. Thus the wave function overlap of the two states can be minimized, suppressing non‐radiative thermalization between the two wells, which in turn leads to radiative relaxation from both states. The molecular analogy to such dual emission would be the inhibition of internal conversion, a special case that violates Kasha′s rule. Using nanosecond time‐resolved spectroscopy of QDQW CdSe/ZnS onion‐like nanocrystals, an intermediate regime of exciton separation and suppressed thermalization is identified where the non‐radiative relaxation of the higher‐energy state is slowed, but not completely inhibited. In this intermediate thermalization regime, the temporal evolution of the delayed emission spectra resulting from trapped carriers mimic the dynamics of such states in nanocrystals that consist of only a QD core. In stark contrast, when a higher‐energy metastable state exists in the QW shell due to strongly suppressed interwell thermalization, the spectral dynamics of the long‐lived excitations in the QD and QW, which are spectrally distinct, are amplified and differ from each other as well as from those in the core‐only nanocrystals. This difference in spectral dynamics demonstrates the utility of exploiting well‐defined exciton localization to study the nature and spatial dependence of the intriguing photophysics of colloidal semiconductor nanocrystals, and illustrates the power of nanosecond gated luminescence spectroscopy in illuminating complex relaxation dynamics which are entirely masked in steady‐state or ultrafast spectroscopy.  相似文献   
102.
New measurements of vaporization enthalpies for 15 1:1 ionic liquids are performed by using a quartz‐crystal microbalance. Collection and analysis of 33 available crystal structures of organic salts, which comprise 13 different cations and 12 anions, is performed. Their dissociation lattice enthalpies are calculated by a combination of experimental and quantum chemical quantities and are divided into the relaxation and Coulomb components to give an insight into elusive short‐range interaction enthalpies. An empirical equation is developed, based on interaction‐specific Hirshfeld surfaces and solvation enthalpies, which enables the estimation of the lattice enthalpy by using only the crystal‐structure data.  相似文献   
103.
104.
Increasing the interlaboratory reproducibility of gas chromatographic retention indices requires avoiding measurements distorted by overloading effects. Several criteria of evaluating the limits of the mass overloading of gas chromatographic systems are compared and reconsidered. The criteria mostly appropriate for practical purposes are based on (i) the dependences of factors of peak broadening (ratio of peak height and its width) vs. amount of analyte injected into the chromatographic column and (ii) the dependence of parameters characterizing the peak distortion (asymmetry factor) vs. the amount of analyte. Both these criteria provide mutually comparable evaluations of the overloading limits for analytes of different polarity. At the same time, the dependence of retention indices vs. amounts of analyte injected in the chromatographic column cannot be recommended for overloading control, because the parameters of the corresponding linear regressions indicate temperature dependence. The interpretation of certain gas chromatographic anomalies requires the correct evaluation of overloading limits. For example, the unusual temperature dependence of retention indices of polar analytes on non‐polar stationary phases and the dependence of retention indices on ratio of amounts of target analytes and reference compounds.  相似文献   
105.
In this study we synthesized and characterized mirror image barnase (B. amyloliquefaciens ribonuclease). d-Barnase was identical to l-barnase, when analyzed by liquid chromatography and mass-spectrometry. Proteolysis of the mirror image enzyme revealed that in contrast to its native counterpart, d-barnase was completely stable to digestive proteases. In enzymatic assays, d-barnase had the reciprocal chiral specificity and was fully active towards mirror image substrates. Interestingly, d-barnase also hydrolyzed the substrate of the native chirality, albeit 4000 times less efficiently. This effect was further confirmed by digesting a native 112-mer RNA with the enzyme. Additional studies revealed that barnase accommodates a range of substrates with various chiralities, but the prime requirement for guanosine remains. These studies point toward using mirror image enzymes as modern agents in biotechnology.  相似文献   
106.
Rotationally inelastic collisions of NO(X) with Ar are investigated in unprecedented detail using state-to-state, crossed molecular beam experiments. The NO(X) molecules are selected in the Ω = 0.5, j = 0.5, f state and then oriented such that either the ‘N’ or ‘O’ end of the molecule is directed towards the incoming Ar atom. Velocity map ion imaging is then used to probe the scattered NO molecules in well-defined quantum states. We show that the fully quantum state-resolved differential steric asymmetry, which quantifies how the relative efficiency for scattering off the ‘O’ and the ‘N’ ends of the molecule varies with scattering angle, is strongly affected by quantum interference. Significant changes in both integral and differential cross sections are found depending on whether collisions occur with the N or O ends of the molecule. The results are well accounted for by rigorous quantum mechanical calculations, in contrast to both classical trajectory calculations and more simplistic models that provide, at best, an incomplete picture of the dynamics.  相似文献   
107.
Studying protein ubiquitination is difficult due to the complexity of the E1–E2–E3 ubiquitination cascade. Here we report the discovery that C-terminal ubiquitin thioesters can undergo direct transthiolation with the catalytic cysteine of the model HECT E3 ubiquitin ligase Rsp5 to form a catalytically active Rsp5∼ubiquitin thioester (Rsp5∼Ub). The resulting Rsp5∼Ub undergoes efficient autoubiquitination, ubiquitinates protein substrates, and synthesizes polyubiquitin chains with native Ub isopeptide linkage specificity. Since the developed chemical system bypasses the need for ATP, E1 and E2 enzymes while maintaining the native HECT E3 mechanism, we named it “Bypassing System” (ByS). Importantly, ByS provides direct evidence that E2 enzymes are dispensable for K63 specific isopeptide bond formation between ubiquitin molecules by Rsp5 in vitro. Additionally, six other E3 enzymes including Nedd4-1, Nedd4-2, Itch, and Wwp1 HECT ligases, along with Parkin and HHARI RBR ligases processed Ub thioesters under ByS reaction conditions. These findings provide general mechanistic insights on protein ubiquitination, and offer new strategies for assay development to discover pharmacological modulators of E3 enzymes.  相似文献   
108.
Many glycoproteins are intimately linked to the onset and progression of numerous heritable or acquired diseases of humans, including cancer. Indeed the recognition of specific glycoproteins remains a significant challenge in analytical method and diagnostic development. Herein, a hierarchical bottom-up route exploiting reversible covalent interactions with boronic acids and so-called click chemistry for the fabrication of glycoprotein selective surfaces that surmount current antibody constraints is described. The self-assembled and imprinted surfaces, containing specific glycoprotein molecular recognition nanocavities, confer high binding affinities, nanomolar sensitivity, exceptional glycoprotein specificity and selectivity with as high as 30 fold selectivity for prostate specific antigen (PSA) over other glycoproteins. This synthetic, robust and highly selective recognition platform can be used in complex biological media and be recycled multiple times with no performance decrement.  相似文献   
109.
Intrinsic doping of hematite through the inclusion of oxygen vacancies (VO) is being increasingly explored as a simple, low temperature route to preparing active water splitting α-Fe2O3–x photoelectrodes. Whilst it is widely accepted that the introduction of VO leads to improved conductivities, little else is verified regarding the actual mechanism of enhancement. Here we employ transient absorption (TA) spectroscopy to build a comprehensive kinetic model for water oxidation on α-Fe2O3–x. In contrast to previous suggestions, the primary effect of introducing VO is to block very slow (ms) surface hole – bulk electron recombination pathways. In light of our mechanistic research we are also able to identify and address a cause of the high photocurrent onset potential, a common issue with this class of electrodes. Atomic layer deposition (ALD) of Al2O3 is found to be particularly effective with α-Fe2O3–x, leading to the photocurrent onset potential shifting by ca. 200 mV. Significantly TA measurements on these ALD passivated electrodes also provide important insights into the role of passivating layers, that are relevant to the wider development of α-Fe2O3 photoelectrodes.  相似文献   
110.
Among luminescence techniques, electrogenerated chemiluminescence (ECL) provides a unique level of manipulation of the luminescent process by controlling the electrochemical trigger. Despite its attractiveness, ECL is by essence a 2D process where light emission is strictly confined to the electrode surface. To overcome this intrinsic limitation, we added a new spatial dimension to the ECL process by generating 3D ECL at the level of millions of micro-emitters dispersed in solution. Each single object is addressed remotely by bipolar electrochemistry and they generate collectively the luminescence in the bulk. Therefore, the entire volume of the solution produces light. To illustrate the generality of this concept, we extended it to a suspension of multi-walled carbon nanotubes where each one acts as an individual ECL nano-emitter. This approach enables a change of paradigm by switching from a surface-limited process to 3D electrogenerated light emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号